

Infectious Drops and Aerosols

Donald Milton, MD, DrPH / Professor / Institute for Applied Environmental Health

Transmission Modes of Respiratory Viruses

- Contact (direct and indirect)
 - Case to finger of contact
 - Fomite to finger of contact
 - Finger to eye, nose, or mouth
- Sprayborne
 - Ballistic drops (> 100 μm)
 - Direct hit on eye, nostril, or mouth
- Aerosol inhalation
 - Nasopharyngeal (Inhalable) $\leq 100 \ \mu m$
 - Thoracic \leq 10-15 μ m
 - Respirable $\leq 5 \ \mu m$

Comparison with Known Aerosol Transmitted Respiratory Infections

Tuberculosis

- Low rate of infectious dose generation (0.5 to 1.2 / hour) for months
- Target: alveolar macrophage
- Aerosol sampling: Negative (except cough box)
- Easily detected in surface samples
- R₀ 0.2 (Netherlands) to 4.3 (China)
- Prolonged close contact
- Long-range transmission only evident in low prevalence settings
- Face masks masks effective as source control

Measles

- High rate of infections dose generation (2 to 10 / minute) for days
- Target: airway dendritic cells & alveolar macrophage
- Aerosol sampling: RNA detected in aerosol No culture evidence of infectious aerosols
- Easily detected in surface samples
- R₀ > 15
- Incidental contact
- Long-range transmission only evident in low prevalence settings
- Face mask?

SCHOOL OF PUBLIC HEALTH C. K. Navaratnarajah, A. R. Generous, I. Yousaf, R. Cattaneo, J. Biol. Chem. 295, 2771–2786 (2020); T. A. Yates *et al., Lancet Infect Dis.* Dis. **16**, 227–238 (2016); W. E. Bischoff et al., J Infect Dis. 213, 600–603 (2016); Y. Ma, C. R. Horsburgh, L. F. White, H. E. Jenkins, Epidemiol Infect. 146, 1478–1494 (2018).

Where SARS Viruses Bind and Infect

SCHOOL OF DUBLIC HEALTH K. P. Y. Hui *et al.*, *Lancet Respir Med* (2020), doi:<u>10.1016/S2213-2600(20)30193-4</u>. H. Xu *et al.*, *Int J Oral Sci.* **12**, 8 (2020).

Total & Regional Respiratory Tract Deposition of Aerosols

• Aerosols

- Liquid and/or solid particles suspended in air
- When inhaled
 - Large particles get stuck in the nose, mouth, and throat
 - Smaller ones penetrate into the large air tubes in the lung
 - Very small ones get into the deepest parts of the lung

Two ways to define droplets and particles that can carry respiratory viruses

Medical categories

- Respiratory droplets
 - Droplets that do not travel very far
 - Mode of inoculation unclear but generally not thought to be 'inhaled'
 - Not considered "airborne infection transmission"
- Aerosols
 - Sometimes called droplet-nuclei
 - Less than 5 μm in diameter
 - Small enough to travel long distances and cause infection far from the source.
 - Considered the only cause of "airborne infection"

Exposure science based categories

J. C. Volkwein, A. D. Maynard, M. Harper, in *Aerosol Measurement*, P. Kulkarni, P. A. Baron, K.

Willeke, Eds. (John Wiley & Sons, Inc., Hoboken, NJ, USA, 2011, pp. 571–590.

Settling Time of Droplets in Still Air

C HEALTH

Indoor Air is not Still: Droplets Can Travel >>2 m Indoors

Travel distance of droplets released from a height of 1 m with directional airflow

10 μ m >15 to >60 m, 20 μ m > 4 to > 15 m, and 30 μ m > 2 to > 5 m, depending on air velocity. Aerosol science does not support the idea that droplets > 5 μ m fallout within 6 meters.

With turbulence distance traveled is less, but settling time is longer.

school of PUBLIC HEALTH

Linsey Marr, Virginia Tech, July 2020, Nazaroff, 2020, personal communication

Randomized Controlled Transmission Study?

SCHOOL OF DUBLIC HEALTH

J. S. Nguyen-Van-Tam et al., PLOS Pathogens. 16, e1008704 (2020).

Aerosols in SARS and MERS

Amoy Gardens SARS Outbreak 187 Cases

Infectious MERS-CoV in Hospital Corridor Air

Yu, I. T.S. et al. N Engl J Med 2004;350:1731-1739

S.-H. Kim et al., Clin. Infect. Dis. 63, 363–369 (2016).

SCHOOL OF

BLIC HEALTH

SARS-CoV-2 Aerosols in Containment Unit, Singapore

Patient	Day of illness	Symptoms reported on day of air sampling	Clinical Ct value*	Airborne SARS- CoV-2 concentrations (RNA copies m ⁻³ air)	Aerosol particle size	Samplers used
1	9	Cough, nausea,	33.22	ND		NIOSH
		dyspnea		ND		SKC Filters
2	5	Cough, dyspnea	18.45	2,000	>4 µm	NIOSH
				1,384	1-4 µm	
3	5	Asymptomatic [†]	20.11	927	>4 µm	NIOSH
				916	1-4 µm	

Average breathing rate ~12-14 m³ per day

SCHOOL OF

P. Y. Chia et al., Nature Communications. 11, 2800 (2020).

Aerodynamic analysis of SARS-CoV-2 in two Wuhan hospitals

Y. Liu et al., Nature, 1–6 (2020).

Aerosol and Surface Transmission Potential

Sample Type

J. L. Santarpia et al., medRxiv, 2020, doi: 10.1101/2020.03.23.20039446.

Transmission Distance

SCHOOL OF DUBLIC HEALTH

Y. Li et al., medRxiv, 2020, doi: 10.1101/2020.04.16.20067728.

Viable SARS-CoV-2 in the air of a hospital room 1 with COVID-19 patients

SCHOOL OF PUBLIC HEALTH

J. A. Lednicky *et al., medRxiv*, medRxiv, doi:<u>10.1101/2020.08.03.20167395</u>.

Human Cough and Sneeze Collectors 1960s

SCHOOL OF PUBLIC HEALTH Gerone PJ, Couch RB, Keefer GV, Douglas RG, Derrenbacher EB, Knight V. Bacteriol Rev. 1966 Sep;30(3):576–88.

Gesundheit-II Human Bioaerosol Collector

- Coarse aerosol (> 5 and < 80 µm)
- Fine aerosol (> 0.05 µm and ≤ 5 µm)
- Influenza virus was cultured from fine aerosol (~1/min)
- Influenza virus is present in exhaled breath – even without coughing.

Influenza virus in exhaled breath

SCHOOL OF **PUBLIC HEALTH**

J. Yan et al., Proc. Natl. Acad. Sci. U.S.A. 115, 1081–1086 (2018)

Masks as Source Control

Influenza Virus Copy Number In Aerosol Particles Exhaled By Patients With And Without Wearing Of An Ear-loop Surgical Mask

Milton DK et al. (2013) PLoS Pathog 9(3): e1003205.

Masks as Source Control

SCHOOL OF BUBLIC HEALTH

N. H. L. Leung et al., Nature Medicine, 1–5 (2020).

Infectious aerosol generation and impact of face masks in SARS-CoV-2 infection

SCHOOL OF

JBLIC HEALTH

The UMD Team and Collaborators

University of Maryland

University of Maryland

University of Maryland

Department of Computer Science

Clark School of Engineering

Charles Ma

Jelena Srebric

Shengwei Zhu

Ashok Agrawala

Mara Cai

Faizan Wajid

Barbara Albert

Jake Bueno de Mesquita

Jennifer German

Filbert Hong

Jianyu Lai

Somayeh Youssefi

Delwin Suraj

Yi Esparza

University of Maryland School of Medicine

Shuo Chen

Wilbur Chen Matthew Frieman

University of California, Irvine School of Public Health Phil Felgner Saahir Khan

> **Rice University** Todd Treangen Leo Elworth

Walter Reed Army Institute of Research Irina Maljkovic-Berry Simon Pollett

Organizations

University of Maryland Institute for **Advanced Computer Studies** Fraunhofer Center for Experimental Software Engineering

Sheldon Tai

SCHOOL OF PUBLIC HEALTH